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Fuchs’ question



Fuchs’ questions

In Fuchs’ book ”Abelian Groups” (1960) the following question is posed

(Problem 72)

Characterize the groups which are the (abelian) groups of all units in

a commutative and associative ring with identity.

The general problem appeared to be very difficult and it is still open.

Partial approaches

• to restrict the class of rings

• to restrict the class of groups

• to restrict both

• Ditor’s question (1971). Which whole numbers can be the number

of units of a ring?
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The history of the problem



Units of number rings

Theorem (Dirichlet (1846))

Let K be a number field and let OK be its ring of integers. Let

[K : Q] = r + 2s (here r is the number of real embeddings of K in Q̄ and

2s the number of non-real embeddings). Then

O∗
K
∼= T × Zr+s−1

where T is the (cyclic) group of the roots of unity contained in K .
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Units in group rings

Let R be a ring and let G be a group. The group ring RG is defined by

RG = {
∑
g∈G

λgg | λg ∈ R and λg = 0 for almost all g}.

Theorem (Higman 1940) Let G be a finite abelian group of order n.

Then

(ZG )∗ ∼= ±G × ZrG

where rG = 1
2 (n + 1 + c2 − 2l), with

cd = #{cyclic subgroups of order d of G} and l =
∑

d|n cn.
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More recently

• Pearson and Schneider (1970): Classification of the realizable cyclic groups.

• Chebolu and Lockridge (2015): Classification of the realizable indecomposable

abelian groups.

• idc, Dvornicich (BLMS 2018 AMPA 2018)

• Classification of the finite abelian groups realizable in the class of the integral

domains/torsion-free rings/reduced rings.

• For general rings → Necessary conditions for a finite ab. group to be realizable.

→ Infinite new families of realizable/non-real. finite abelian groups.

• idc (JLMS 2020) Classification of the finitely generated abelian groups which

can be realized in the class of the integral domains, of the torsion-free rings and

of the reduced rings.

• idc (work in progress) Some progress on classification using braces (radical rings).
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Finitely generated abelian groups



Finitely generated abelian groups

Fuchs’ question for finitely generated abelian groups

A ring with 1, A∗ group of units of A. Assume that A∗ is finitely

generated and abelian

A∗ ∼= (A∗)tors × ZrA

Problem: what groups arise?

- T finite abelian group: ∃ A ∈ C such that (A∗)tors ∼= T?

- If (A∗)tors ∼= T what can we say on rA = rank(A∗)?
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Reduction step 1

Let A0(=Z or Z/nZ) be the fundamental subring of A and consider the

ring R = A0[(A
∗)tors ].

Clearly R∗ ≤ A∗, therefore

rA ≥ rR

and also

(A∗)tors = (R∗)tors .

So, up to changing A←→ R = A0[(A
∗)tors ], we can restrict to study:

commutative rings which are finitely generated and integral over A0.
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Results for special classes of rings



Integral domains

Theorem (idc JLMS2020)

The finitely generated abelian groups that occur as groups of units of an

integral domain are:

i) char(A) = p: all groups of the form F∗
pn × Zr with n ≥ 1 and r ≥ 0;

ii) char(A) = 0: all groups of the form Z/2nZ× Zr , with n ≥ 1,

r ≥ ϕ(2n)
2 − 1.

Corollary

The finite abelian groups that occur as groups of units of an integral

domain A are:

i) the multiplicative groups of the finite fields if char(A) > 0;

ii) the cyclic groups of order 2,4, or 6 if char(A) = 0.

8



Torsion-free rings

A is torsion-free if 0 is the only element of finite additive order. In this

case, char(A) = 0.

Example: If R is a torsion-free ring and G is a group, then RG is

torsion-free.

Theorem (idc JLMS2020)

Let T be a finite abelian group of even order. Then there exists an

explicit constant g(T ) such that the following holds:

T × Zr

is the group of units of a torsion-free ring if and only if r ≥ g(T ).
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T ∼=
s∏

ι=1

Z/paιι Z×
ρ∏

i=1

Z/2ϵiZ× (Z/2ϵZ)σ

where s, ρ ≥ 0, σ ≥ 1 and

- for all ι = 1, . . . , s the pι’s are odd prime numbers, not necessarily

distinct, and aι ≥ 1;

- ϵ = ϵ(T ) ≥ 1 and ϵi > ϵ for all i = 1, . . . , ρ .

g(T ) =
s∑

ι=1

(
ϕ(2ϵpaιι )

2
− 1) +

ρ∑
i=1

(
ϕ(2ϵi )

2
− 1) + c(T )

where

c(T ) =


(σ − s)(ϕ(2

ϵ)
2 − 1) for s < σ and ϵ > 1

0 for s0 ≤ σ ≤ s or ϵ = 1⌈
ϕ(2ϵ)

2 − 1
⌉

for σ < s0

where s0 = #{p1, . . . , ps}.
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Corollary (idc, R.Dvornicich BLMS2018)

The finite abelian groups which are the group of units of a torsion-free

ring A, are all those of the form

(Z/2Z)a × (Z/4Z)b × (Z/3Z)c

where a, b, c ∈ N, a+ b ≥ 1 and a ≥ 1 if c ≥ 1.

In particular, the possible values of |A∗| are the integers 2d3c with d ≥ 1.
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Reduced rings

Theorem (idc JLMS2020)

The finitely generated abelian groups that occur as groups of units of a

reduced ring are those of the form

k∏
i=1

F∗
p
ni
i
× T × Zg

where k, n1, . . . , nk are positive integers, {p1, . . . , pk} are, not necessarily
distinct, primes, T is any finite abelian group of even order and

g ≥ g(T ).
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Tools



An exact sequence

Let N = {a ∈ A | an = 0 for some n ∈ N} be the nilradical of A. Clearly

1 +N < A∗, so we have the following exact sequence:

1→ 1 +N→ A∗ → A∗/(1 +N)→ 1

1→ 1 +N→ A∗ → (A/N)∗ → 1

The quotient ring A/N is reduced, namely, its nilradical is trivial.

This exact sequence does not split in general.
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Reduction step 2: splitting of the ring

Proposition (Pearson & Schneider 1970)

Let A be a commutative ring which is finitely generated and integral over

its fundamental subring. Then A = A1 ⊕ A2, where A1 is a finite ring and

the torsion ideal of A2 is contained in its nilradical.

We will say that A is of type 2 if its torsion ideal is contained in the

nilradical.

If A is a type 2 ring ⇒ char(A) = 0 since 1 is not nilpotent.

We can split the problem in the study of the units of finite rings and of

characteristic 0 rings of type 2.
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Finite rings



Finite rings

Let A be finite and commutative, then A is artinian and therefore

A ∼= A1 × · · · × As (where Ai are local artinian rings) and

A∗ ∼= A∗
1 × · · · × A∗

s .

Let (A,m) be finite a local ring, and let char(A) = pc . In this case

N = m and the exact sequence is

1→ 1 +N ↪→ A∗→(A/N)∗ → 1

1→ 1 +m ↪→ A∗→F∗
pλ → 1

This sequence is split and therefore

A∗ ∼= (A/m)∗ × (1 +m) ∼= F∗
pλ × (1 +m).

What can we say on the abelian p-group 1 +m?
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The abelian p-group 1 +m.

• |1 +m| = pkλ for some k ≥ 0

• Positive results. ∀P abelian p-group there exists (A,m) with

A∗ ∼= F∗
pλ × Pλ.

In particular, all groups of type F∗
p × P are the groups units of finite

local rings. Here p > 2.

• On the negative side → 1 +m can be different from Pλ, but it can

not be any p-group if λ > 1 and not even any group of cardinality

pkλ.

Example: For λ > 1, the group 1 +m can not be cyclic.

The presence of a “big” residue field gives an obstruction.
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Characteristic zero rings



Characteristic 0 rings

We now restrict to the case when A∗ is a finite abelian group.

Theorem (idc, R.Dvornicich)

If char(A) = 0, then

A∗ ∼=

{
Z/2Z× H

Z/4Z× H
,

where H is finite and abelian.

As a partial converse, we have that every group of type

Z/2Z× H,

where H is a finite abelian group, occur as group of units of a

characteristic 0 ring.
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Ditor’s question

The last theorem, together with the result on finite rings, allows us to

completely answer Ditor’s question for rings of any characteristic.

Corollary

• The possible values of |A∗|, when A is a characteristic 0 ring with

finite group of units, are all the even positive integers.

• The possible values of |A∗|, when A is a ring with finite group of

units, are all the even positive integers and the finite products of

integers of the form 2λ − 1 with λ ≥ 1.
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The case ϵ = 2

We have seen that

A∗ ∼= Z/2ϵZ× H with ϵ = 1 or 2

For ϵ = 1 all groups H are possible.

The same is no longer true for rings with ϵ = 2.

Example: We can not have H ∼= Z/11Z, since the cyclic group Z/44Z is

not realizable.

If ϵ(A) = 2, then Z[i ] ⊆ A.

The presence of the ring Z[i ] is the obstruction in this case.
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Consider the exact sequence

1→ 1 +N→ A∗ → (A/N)∗ → 1

and the exact sequence induced on the p-Sylow

1→ (1 +N)p → (A∗)p → (A/N)∗p → 1.

This can be rewritten as

1→ (1 +Np)→ (A∗)p → B∗
p → 1

where B = A/N.

If A is a type 2 ring, then the ring B is torsion-free and B∗ is described

by our classification. In particular,

(B∗)p is trivial for p > 3 and also for p = 3 if ϵ(A) = 2.

Hence

(A∗)p = 1 +Np ∀p ≥ 3.
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In the case when A is of type 2 with ϵ(A) = 2 we have found some

necessary and some sufficient conditions, which are indeed very strict but

not conclusive.

• p ≡ 1 (mod 4): (A∗)p = 1 +Np can be any abelian p-group.

• p ≡ 3 (mod 4):

• (A∗)p = 1 +Np

• it can not be any p-group (e.g. it can not be cyclic),

• the cardinality of (A∗)p must be a square,

• and all squares of a p-group are realizable.

• p = 2: we have an exact sequence

1→ 1 +N2 → (A∗)2 → (Z/2Z)a × (Z/4Z)b → 1

where a+ b ≥ 1. We have a (not exhaustive) list of realizable

2-Sylow subgroups of A∗.
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The radical ring N



The radical ring N

Both in the case char(A) > 0 and in the case char(A) = 0, we are left to

study the group

1 +N

• When char(A) > 0 and A local =⇒ A∗ ∼= F∗
pλ × 1 +N

the knowledge of 1 +N would be enough the conclude the

characterization of the groups of units arising in this case.

• When char(A) = 0 =⇒ A∗
p = 1 +Np, for p > 2

(the knowledge of 1 +N2 is not sufficient to determine the 2-Sylow of

A∗.)
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N is a radical ring, so we can consider on it the adjoint operation ◦
defined by

x ◦ y = x + y + xy , ∀x , y ∈ N

we have that (N,+, ◦) is a (two-sided) brace and 1 +N ∼= (N, ◦).

The following theorem gives some relation between the two group

structures of a brace.

(For a p-group G we call rank(G ) is the maximum r such that G has a

subgroup of exponent p and order pr . If G is abelian it is the number of

cyclic factors of its decomposition as a product of cyclic groups)

Theorem (FCC12 - Bac16 - Caranti idc 22)

Let p be a prime, and let (G ,+, ◦) be a brace of order a power of the

prime p. Then

rank(G ,+) < p − 1⇐⇒ rank(G , ◦) < p − 1.

When these conditions hold, (G ,+) and (G , ◦) have the same rank, and

each element has the same order in (G ,+) and (G , ◦).
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[FCC12] =⇒ if rank(Np) < p − 1 then 1 +Np
∼= Np

Q1 What kind of abelian group can be Np?

Q2 Can we weaken the condition on the rank in [FCC12] and get the

same result for 1 +Np?

Q1: we are looking for some general information on Np.

Q2 seems to be hopeless: [FCC12] has been refined by Bachiller and by

Caranti and myself, but well known examples show that it can not be

generalized to braces (or radical rings) of rank= p − 1, so we have to

understand what kind of generalization is possible.
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Q1

Consider the case (A,m) local with A/m ∼= F∗
pλ , but

everything has an analog for characteristic 0 rings!

In this case N = Np = m.

m can be the λ power of any abelian p-group.

In fact, let P ∼= Z/pa0Z× Z/pa1Z× · · · × Z/parZ (a0 ≥ ai ).

Define R = (Z/pa0+1Z)[t]
(f (t)) where f (t) is irreducible modulo p of degree λ.

Then

A =
R[x1, . . . xr ]

(pai xi , xixj)1≤i,j≤r

is such that m ∼= Pλ.
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Q1

The following Theorem shows that also the converse holds, i.e.

m is always the λ power of an abelian p-group.

Theorem

(A,m) local, with A/m ∼= Fpλ . Then,

m ∼= Pλ

where P is an abelian p-group.

Sketch of the proof. Let Dλ = Zp[ζpλ−1], where ζpλ−1 ∈ Q̄p is a root

of unit of order pλ − 1 (notice that Dλ is the ring of integers of the

unramified extension of Qp of degree λ).

We can prove that m is a Dλ-module. Being Dλ a DVR, we have

m ∼=
n⊕

i=1

Dλ/p
aiDλ

∼= (
n⊕

i=1

Z/paiZ)λ,

where the first is an isomorphism of Dλ-modules and the second as

groups. 26



Generalizing FCC12 and Bac15

m = Pλ: [FCC12] applies only when rankPλ = λrankP < p − 1.

For λ ≥ p − 1 [FCC12] gives NO information on 1 +m.

Theorem (idc)

Let p be a prime number, and let D be a PID such that p is a prime in D.

Let (N,+) is a D-module of order a power of p, with rankDN < p− 1,

Then if (N,+, ◦) is a ”brace” then each element has the same order in

(N,+) and (N, ◦).

In particular, if (N, ◦) is abelian, then (N,+) ∼= (N, ◦).

Here rankDN = #summand of the dec. of N as a sum of cyclic D−mod.

[Bac15] gives the same result of last theorem for D = Z.
Further examples: D = the ring of integers of unramified extensions of Qp.

The theorem above admits a partial generalization to the case when D is

a generic Dedekind domain, without any assumption on the factorization

of pD. Here with ”brace” we intend a two sided (+ some other) braces.
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Generalization to Dedekind domanis

Theorem (idc)

Let (N,+, ◦) be a two-sided (or also more general) brace of cardinality

the power of a prime p.

Assume that (N,+) is a O-module, where O is the ring of integers of a

number field or a p-adic field.

Let pO = Pe1
1 · · ·Per

r be the factorization of pO. For each i = 1, . . . , r ,

let fi = [OPi
: Z
pZ ] and denote by Ni the Pi -component of N.

If the Z-rank of the abelian group Ni is < fi (p − 1), for all i = 1, . . . , r ,

then (N,+) and (N, ◦) have the same number of element of each order.

In particular, if (N, ◦) is abelian, then (N,+) ∼= (N, ◦).
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The case of small rank: char(A)>0

Theorem (idc)

Let (A,m) be a finite local ring with residue field of cardinality pλ.

If rank m < λ(p − 1), then

A∗ ∼= F∗
pλ × Pλ

where P is an abelian p-group.

Sketch of the proof. The condition λ(p − 1) > rank m = λrankDλ
m

gives

rankDλ
m < p − 1

therefore the previous theorem applies giving 1 +m ∼= m. Since m = Pλ

for some P, we can conclude.

We have a classification of all small finite abelian groups occurring

as group of units of a finite ring.
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The case of small rank: char(A)=0

Let A a type 2 ring with ϵ = 2.

Then, N is a Z[i ]-module.

In this case we say that an abelian group H is small if

rank(Hp) < 2(p − 1), for all p ≡ 3 (mod 4).

Theorem (idc)

Let H be a small abelian group of odd order.

The group Z/4Z× H, is the group of units of type 2 ring, if and only if

Hp is the square of a group, ∀p ≡ 3 (mod 4).
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Thank you!
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