On Fuchs' problem on the group of units of a ring: the state of the art and some progress using braces

Ilaria Del Corso

Omaha, May 30, 2022

Dipartimento di Matematica Università di Pisa

Fuchs' question

_

In Fuchs' book "Abelian Groups" (1960) the following question is posed (Problem 72)

Characterize the groups which are the (abelian) groups of all units in a commutative and associative ring with identity.

The general problem appeared to be very difficult and it is still open. Partial approaches

- to restrict the class of rings
- to restrict the class of groups
- to restrict both
- Ditor's question (1971). Which whole numbers can be the number of units of a ring?

The history of the problem

Theorem (Dirichlet (1846))

Let K be a number field and let \mathcal{O}_K be its ring of integers. Let $[K : \mathbb{Q}] = r + 2s$ (here r is the number of real embeddings of K in $\overline{\mathbb{Q}}$ and 2s the number of non-real embeddings). Then

$$\mathcal{O}_K^* \cong T \times \mathbb{Z}^{r+s-1}$$

where T is the (cyclic) group of the roots of unity contained in K.

Let R be a ring and let G be a group. The group ring RG is defined by

$$RG = \{\sum_{g \in G} \lambda_g g \mid \lambda_g \in R \text{ and } \lambda_g = 0 \text{ for almost all } g\}.$$

Theorem (Higman 1940) Let G be a finite abelian group of order n. Then

$$(\mathbb{Z}G)^* \cong \pm G \times \mathbb{Z}^{r_G}$$

where $r_G = \frac{1}{2}(n+1+c_2-2l)$, with $c_d = \#\{$ cyclic subgroups of order d of $G\}$ and $l = \sum_{d|n} c_n$.

- Pearson and Schneider (1970): Classification of the realizable cyclic groups.
- Chebolu and Lockridge (2015): Classification of the realizable indecomposable abelian groups.
- idc, Dvornicich (BLMS 2018 AMPA 2018)
 - Classification of the finite abelian groups realizable in the class of the integral domains/torsion-free rings/reduced rings.
 - For general rings → Necessary conditions for a finite ab. group to be realizable.
 → Infinite new families of realizable/non-real. finite abelian groups.
- idc (JLMS 2020) Classification of the finitely generated abelian groups which can be realized in the class of the integral domains, of the torsion-free rings and of the reduced rings.
- idc (work in progress) Some progress on classification using braces (radical rings).

Finitely generated abelian groups

Fuchs' question for finitely generated abelian groups

A ring with 1, A^* group of units of A. Assume that A^* is finitely generated and abelian

 $A^*\cong (A^*)_{tors} imes \mathbb{Z}^{r_A}$

Problem: what groups arise?

- T finite abelian group: $\exists A \in C$ such that $(A^*)_{tors} \cong T$?
- If $(A^*)_{tors} \cong T$ what can we say on $r_A = \operatorname{rank}(A^*)$?

Let $A_0(=\mathbb{Z} \text{ or } \mathbb{Z}/n\mathbb{Z})$ be the fundamental subring of A and consider the ring $R = A_0[(A^*)_{tors}]$.

Clearly $R^* \leq A^*$, therefore

 $r_A \ge r_R$

and also

$$(A^*)_{tors} = (R^*)_{tors}.$$

So, up to changing $A \leftrightarrow R = A_0[(A^*)_{tors}]$, we can restrict to study: commutative rings which are finitely generated and integral over A_0 .

Results for special classes of rings

Theorem (idc JLMS 2020)

The finitely generated abelian groups that occur as groups of units of an integral domain are:

i) char(A) = p: all groups of the form $\mathbb{F}_{p^n}^* \times \mathbb{Z}^r$ with $n \ge 1$ and $r \ge 0$; ii) char(A) = 0: all groups of the form $\mathbb{Z}/2n\mathbb{Z} \times \mathbb{Z}^r$, with $n \ge 1$, $r \ge \frac{\phi(2n)}{2} - 1$.

Corollary

The finite abelian groups that occur as groups of units of an integral domain A are:

i) the multiplicative groups of the finite fields if char(A) > 0;

ii) the cyclic groups of order 2,4, or 6 if char(A) = 0.

A is torsion-free if 0 is the only element of finite additive order. In this case, char(A) = 0. Example: If R is a torsion-free ring and G is a group, then RG is torsion-free.

Theorem (idc JLMS 2020)

Let T be a finite abelian group of even order. Then there exists an explicit constant g(T) such that the following holds:

$T \times \mathbb{Z}^r$

is the group of units of a torsion-free ring if and only if $r \ge g(T)$.

$$T \cong \prod_{\iota=1}^{s} \mathbb{Z}/p_{\iota}^{\mathfrak{a}_{\iota}}\mathbb{Z} \times \prod_{i=1}^{\rho} \mathbb{Z}/2^{\epsilon_{i}}\mathbb{Z} \times (\mathbb{Z}/2^{\epsilon}\mathbb{Z})^{\sigma}$$

where $s, \rho \ge 0$, $\sigma \ge 1$ and - for all $\iota = 1, \ldots, s$ the p_{ι} 's are odd prime numbers, not necessarily distinct, and $a_{\iota} \ge 1$;

- $\epsilon = \epsilon(T) \ge 1$ and $\epsilon_i > \epsilon$ for all $i = 1, \dots, \rho$.

$$g(T) = \sum_{\iota=1}^{s} \left(\frac{\phi(2^{\epsilon} p_{\iota}^{s_{\iota}})}{2} - 1\right) + \sum_{i=1}^{\rho} \left(\frac{\phi(2^{\epsilon_i})}{2} - 1\right) + c(T)$$

where

$$c(T) = \begin{cases} (\sigma - s)(\frac{\phi(2^{\epsilon})}{2} - 1) & \text{for } s < \sigma \text{ and } \epsilon > 1 \\ 0 & \text{for } s_0 \le \sigma \le s \text{ or } \epsilon = 1 \\ \left\lceil \frac{\phi(2^{\epsilon})}{2} - 1 \right\rceil & \text{for } \sigma < s_0 \end{cases}$$

where $s_0 = \#\{p_1, ..., p_s\}.$

Corollary (idc, R.Dvornicich BLMS 2018)

The finite abelian groups which are the group of units of a torsion-free ring A, are all those of the form

 $(\mathbb{Z}/2\mathbb{Z})^{a} \times (\mathbb{Z}/4\mathbb{Z})^{b} \times (\mathbb{Z}/3\mathbb{Z})^{c}$

where $a, b, c \in \mathbb{N}$, $a + b \ge 1$ and $a \ge 1$ if $c \ge 1$.

In particular, the possible values of $|A^*|$ are the integers $2^d 3^c$ with $d \ge 1$.

Theorem (idc JLMS 2020)

The finitely generated abelian groups that occur as groups of units of a reduced ring are those of the form

$$\prod_{i=1}^{k} \mathbb{F}_{p_{i}^{n_{i}}}^{*} \times T \times \mathbb{Z}^{g}$$

where $k, n_1, ..., n_k$ are positive integers, $\{p_1, ..., p_k\}$ are, not necessarily distinct, primes, T is any finite abelian group of even order and $g \ge g(T)$.

Tools

Let $\mathfrak{N} = \{a \in A \mid a^n = 0 \text{ for some } n \in \mathbb{N}\}\$ be the nilradical of A. Clearly $1 + \mathfrak{N} < A^*$, so we have the following exact sequence:

$$1
ightarrow 1 + \mathfrak{N}
ightarrow A^*
ightarrow A^*/(1 + \mathfrak{N})
ightarrow 1$$

$$1
ightarrow 1 + \mathfrak{N}
ightarrow A^*
ightarrow (A/\mathfrak{N})^*
ightarrow 1$$

The quotient ring A/\mathfrak{N} is *reduced*, namely, its nilradical is trivial. This exact sequence does not split in general.

Proposition (Pearson & Schneider 1970)

Let A be a commutative ring which is finitely generated and integral over its fundamental subring. Then $A = A_1 \oplus A_2$, where A_1 is a finite ring and the torsion ideal of A_2 is contained in its nilradical.

We will say that A is of type 2 if its torsion ideal is contained in the nilradical.

If A is a type 2 ring \Rightarrow char(A) = 0 since 1 is not nilpotent.

We can split the problem in the study of the units of finite rings and of characteristic 0 rings of type 2.

Finite rings

Finite rings

Let A be finite and commutative, then A is artinian and therefore $A \cong A_1 \times \cdots \times A_s$ (where A_i are *local* artinian rings) and

$$A^* \cong A_1^* \times \cdots \times A_s^*.$$

Let (A, \mathfrak{m}) be finite a local ring, and let char $(A) = p^c$. In this case $\mathfrak{N} = \mathfrak{m}$ and the exact sequence is

$$1 \rightarrow 1 + \mathfrak{N} \hookrightarrow A^* {\rightarrow} (A/\mathfrak{N})^* \rightarrow 1$$

$$1 \to 1 + \mathfrak{m} \hookrightarrow A^* \to \mathbb{F}_{p^{\lambda}}^* \to 1$$

This sequence is split and therefore

$$A^*\cong (A/\mathfrak{m})^* imes (1+\mathfrak{m})\cong \mathbb{F}_{p^\lambda}^* imes (1+\mathfrak{m}).$$

What can we say on the abelian *p*-group $1 + \mathfrak{m}$?

The abelian *p*-group $1 + \mathfrak{m}$.

- $|1 + \mathfrak{m}| = p^{k\lambda}$ for some $k \ge 0$
- Positive results. $\forall P$ abelian *p*-group there exists (A, \mathfrak{m}) with

$$A^* \cong \mathbb{F}_{p^{\lambda}}^* \times P^{\lambda}.$$

In particular, all groups of type $\mathbb{F}_p^* \times P$ are the groups units of finite local rings. Here p > 2.

• On the negative side $\rightarrow 1 + \mathfrak{m}$ can be different from P^{λ} , but it can not be any *p*-group if $\lambda > 1$ and not even any group of cardinality $p^{k\lambda}$.

Example: For $\lambda > 1$, the group $1 + \mathfrak{m}$ can not be cyclic.

The presence of a "big" residue field gives an obstruction.

Characteristic zero rings

Characteristic 0 rings

We now restrict to the case when A^* is a **finite abelian** group.

Theorem (idc, R.Dvornicich)

If char(A) = 0, then

$$A^*\congegin{cases} \mathbb{Z}/2\mathbb{Z} imes H\ \mathbb{Z}/4\mathbb{Z} imes H \end{cases}$$
 ,

where H is finite and abelian.

As a partial converse, we have that every group of type

$$\mathbb{Z}/2\mathbb{Z}\times H$$
,

where H is a finite abelian group, occur as group of units of a characteristic 0 ring.

The last theorem, together with the result on finite rings, allows us to completely answer Ditor's question for rings of any characteristic.

Corollary

- The possible values of $|A^*|$, when A is a characteristic 0 ring with finite group of units, are all the even positive integers.
- The possible values of $|A^*|$, when A is a ring with finite group of units, are all the even positive integers and the finite products of integers of the form $2^{\lambda} 1$ with $\lambda \geq 1$.

We have seen that

$$A^* \cong \mathbb{Z}/2^{\epsilon}\mathbb{Z} \times H$$
 with $\epsilon = 1$ or 2

For $\epsilon = 1$ all groups *H* are possible.

The same is no longer true for rings with $\epsilon = 2$.

Example: We can not have $H \cong \mathbb{Z}/11\mathbb{Z}$, since the cyclic group $\mathbb{Z}/44\mathbb{Z}$ is not realizable.

If
$$\epsilon(A) = 2$$
, then $\mathbb{Z}[i] \subseteq A$.

The presence of the ring $\mathbb{Z}[i]$ is the obstruction in this case.

Consider the exact sequence

$$1
ightarrow 1 + \mathfrak{N}
ightarrow A^*
ightarrow (A/\mathfrak{N})^*
ightarrow 1$$

and the exact sequence induced on the *p*-Sylow

$$1 \to (1 + \mathfrak{N})_{\rho} \to (A^*)_{\rho} \to (A/\mathfrak{N})^*_{\rho} \to 1.$$

This can be rewritten as

$$1
ightarrow (1 + \mathfrak{N}_{
ho})
ightarrow (A^*)_{
ho}
ightarrow B^*_{
ho}
ightarrow 1$$

where $B = A/\mathfrak{N}$.

If **A** is a **type 2 ring**, then the ring B is torsion-free and B^* is described by our classification. In particular,

$$(B^*)_p$$
 is trivial for $p > 3$ and also for $p = 3$ if $\epsilon(A) = 2$.

Hence

$$(A^*)_p = 1 + \mathfrak{N}_p \ \forall p \geq 3.$$

In the case when A is of type 2 with $\epsilon(A) = 2$ we have found some necessary and some sufficient conditions, which are indeed very strict but not conclusive.

- $p \equiv 1 \pmod{4}$: $(A^*)_p = 1 + \mathfrak{N}_p$ can be any abelian *p*-group.
- $p \equiv 3 \pmod{4}$:
 - $(A^*)_p = 1 + \mathfrak{N}_p$
 - it can not be any *p*-group (e.g. it can not be cyclic),
 - the cardinality of $(A^*)_p$ must be a square,
 - and all squares of a *p*-group are realizable.
- p = 2: we have an exact sequence

$$1 \rightarrow 1 + \mathfrak{N}_2 \rightarrow (\mathcal{A}^*)_2 \rightarrow (\mathbb{Z}/2\mathbb{Z})^a \times (\mathbb{Z}/4\mathbb{Z})^b \rightarrow 1$$

where $a + b \ge 1$. We have a (not exhaustive) list of realizable 2-Sylow subgroups of A^* .

The radical ring $\mathfrak N$

Both in the case char(A) > 0 and in the case char(A) = 0, we are left to study the group

$$1 + \mathfrak{N}$$

- When char(A) > 0 and A local $\Longrightarrow A^* \cong \mathbb{F}_{p^{\lambda}}^* \times 1 + \mathfrak{N}$ the knowledge of $1 + \mathfrak{N}$ would be enough the conclude the characterization of the groups of units arising in this case.
- When $char(A) = 0 \Longrightarrow A_p^* = 1 + \mathfrak{N}_p$, for p > 2(the knowledge of $1 + \mathfrak{N}_2$ is not sufficient to determine the 2-Sylow of A^* .)

 ${\mathfrak N}$ is a radical ring, so we can consider on it the adjoint operation \circ defined by

$$x \circ y = x + y + xy, \qquad \forall x, y \in \mathfrak{N}$$

we have that $(\mathfrak{N}, +, \circ)$ is a (two-sided) brace and $1 + \mathfrak{N} \cong (\mathfrak{N}, \circ)$.

The following theorem gives some relation between the two group structures of a brace.

(For a p-group G we call rank(G) is the maximum r such that G has a subgroup of exponent p and order p^r . If G is abelian it is the number of cyclic factors of its decomposition as a product of cyclic groups)

Theorem (FCC12 - Bac16 - Caranti idc 22)

Let p be a prime, and let $(G, +, \circ)$ be a brace of order a power of the prime p. Then

$$rank(G, +)$$

When these conditions hold, (G, +) and (G, \circ) have the same rank, and each element has the same order in (G, +) and (G, \circ) .

 $[\mathsf{FCC12}] \Longrightarrow \mathsf{if} \operatorname{rank}(\mathfrak{N}_p) < p-1 \mathsf{ then } 1 + \mathfrak{N}_p \cong \mathfrak{N}_p$

- Q1 What kind of abelian group can be \mathfrak{N}_p ?
- Q2 Can we weaken the condition on the rank in [FCC12] and get the same result for $1 + \mathfrak{N}_p$?
- Q1: we are looking for some general information on $\mathfrak{N}p$.

Q2 seems to be hopeless: [FCC12] has been refined by Bachiller and by Caranti and myself, but well known examples show that it can not be generalized to braces (or radical rings) of rank= p - 1, so we have to understand what kind of generalization is possible.

Consider the case (A, \mathfrak{m}) local with $A/\mathfrak{m} \cong \mathbb{F}_{p^{\lambda}}^{*}$, but everything has an analog for characteristic 0 rings!

In this case $\mathfrak{N} = \mathfrak{N}_p = \mathfrak{m}$.

 \mathfrak{m} can be the λ power of any abelian *p*-group.

In fact, let $P \cong \mathbb{Z}/p^{a_0}\mathbb{Z} \times \mathbb{Z}/p^{a_1}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{a_r}\mathbb{Z}$ $(a_0 \ge a_i)$. Define $R = \frac{(\mathbb{Z}/p^{a_0+1}\mathbb{Z})[t]}{(f(t))}$ where f(t) is irreducible modulo p of degree λ . Then

$$A = \frac{R[x_1, \dots, x_r]}{(p^{a_i}x_i, x_ix_j)_{1 \le i,j \le r}}$$

is such that $\mathfrak{m} \cong P^{\lambda}$.

The following Theorem shows that also the converse holds, i.e.

 $\mathfrak m$ is always the λ power of an abelian $p\text{-}\mathsf{group}.$

Theorem

 (A,\mathfrak{m}) local, with $A/\mathfrak{m}\cong\mathbb{F}_{p^{\lambda}}.$ Then,

 $\mathfrak{m}\cong P^{\lambda}$

where P is an abelian p-group.

Sketch of the proof. Let $D_{\lambda} = \mathbb{Z}_p[\zeta_{p^{\lambda}-1}]$, where $\zeta_{p^{\lambda}-1} \in \overline{\mathbb{Q}}_p$ is a root of unit of order $p^{\lambda} - 1$ (notice that D_{λ} is the ring of integers of the unramified extension of \mathbb{Q}_p of degree λ).

We can prove that **m** is a D_{λ} -module. Being D_{λ} a DVR, we have

$$\mathfrak{m} \cong \bigoplus_{i=1}^n D_\lambda / p^{\mathfrak{a}_i} D_\lambda \cong (\bigoplus_{i=1}^n \mathbb{Z} / p^{\mathfrak{a}_i} \mathbb{Z})^\lambda,$$

where the first is an isomorphism of D_{λ} -modules and the second as groups.

 $\mathfrak{m} = P^{\lambda}$: [FCC12] applies only when rank $P^{\lambda} = \lambda \operatorname{rank} P .$

For $\lambda \ge p-1$ [FCC12] gives NO information on $1 + \mathfrak{m}$.

Theorem (idc)

Let p be a prime number, and let D be a PID such that p is a prime in D. Let (N, +) is a D-module of order a power of p, with $\operatorname{rank_DN} ,$ $Then if <math>(N, +, \circ)$ is a "brace" then each element has the same order in (N, +) and (N, \circ) .

In particular, if (N, \circ) is abelian, then $(N, +) \cong (N, \circ)$.

Here $rank_D N = #summand of the dec. of N as a sum of cyclic D-mod.$

[Bac15] gives the same result of last theorem for $D = \mathbb{Z}$.

Further examples: D = the ring of integers of unramified extensions of \mathbb{Q}_p . The theorem above admits a partial generalization to the case when D is a generic Dedekind domain, without any assumption on the factorization of pD. Here with "brace" we intend a two sided (+ some other) braces.

Theorem (idc)

Let $(N, +, \circ)$ be a two-sided (or also more general) brace of cardinality the power of a prime p.

Assume that (N, +) is a \mathcal{O} -module, where \mathcal{O} is the ring of integers of a number field or a p-adic field.

Let $p\mathcal{O} = P_1^{e_1} \cdots P_r^{e_r}$ be the factorization of $p\mathcal{O}$. For each $i = 1, \ldots, r$, let $f_i = \begin{bmatrix} \mathcal{O} \\ P_i \end{bmatrix}$ and denote by N_i the P_i -component of N.

If the \mathbb{Z} -rank of the abelian group N_i is $< f_i(p-1)$, for all i = 1, ..., r, then (N, +) and (N, \circ) have the same number of element of each order. In particular, if (N, \circ) is abelian, then $(N, +) \cong (N, \circ)$. Theorem (idc)

Let (A, \mathfrak{m}) be a finite local ring with residue field of cardinality p^{λ} . If rank $\mathfrak{m} < \lambda(p-1)$, then

$$A^* \cong \mathbb{F}_{p^{\lambda}}^* \times P^{\lambda}$$

where P is an abelian p-group.

Sketch of the proof. The condition $\lambda(p-1) > \operatorname{rank} \mathfrak{m} = \lambda \operatorname{rank}_{D_{\lambda}} \mathfrak{m}$ gives

$$\operatorname{rank}_{D_{\lambda}} \mathfrak{m} < p-1$$

therefore the previous theorem applies giving $1 + \mathfrak{m} \cong \mathfrak{m}$. Since $\mathfrak{m} = P^{\lambda}$ for some P, we can conclude.

We have a classification of all small finite abelian groups occurring as group of units of a finite ring.

```
Let A a type 2 ring with \epsilon = 2.
```

```
Then, \mathfrak{N} is a \mathbb{Z}[i]-module.
```

In this case we say that an abelian group H is *small* if

 $\operatorname{rank}(H_p) < 2(p-1)$, for all $p \equiv 3 \pmod{4}$.

Theorem (idc)

Let H be a small abelian group of odd order.

The group $\mathbb{Z}/4\mathbb{Z} \times H$, is the group of units of type 2 ring, if and only if H_p is the square of a group, $\forall p \equiv 3 \pmod{4}$.

Thank you!

- DEL CORSO ILARIA, DVORNICICH ROBERTO, Finite groups of units of finite characteristic rings, *Annali di Matematica Pura ed Applicata*, **197(3)** (2018), 661-671.
- DEL CORSO ILARIA, DVORNICICH ROBERTO, On Fuchs' Problem about the group of units of a ring, *Bull. London Math. Soc.*, **50** (2018,) 274-292.
- DEL CORSO ILARIA, Finitely generated abelian groups of units, J. London Math. Soc., 101 (1) (2020), 247-270.
- CARANTI A. DEL CORSO I., On the ranks of the additive and the multiplicative groups of a brace, *Rivista Mat. Univ. Parma, Special issue In honour of Roberto Dvornicich's 70th birthday.*
- DEL CORSO ILARIA, On Fuchs' problem on the group of units of a ring: the case of groups of *small* rank, *work in progress.*